If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32^2+40^2=x^2
We move all terms to the left:
32^2+40^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+2624=0
a = -1; b = 0; c = +2624;
Δ = b2-4ac
Δ = 02-4·(-1)·2624
Δ = 10496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10496}=\sqrt{256*41}=\sqrt{256}*\sqrt{41}=16\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{41}}{2*-1}=\frac{0-16\sqrt{41}}{-2} =-\frac{16\sqrt{41}}{-2} =-\frac{8\sqrt{41}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{41}}{2*-1}=\frac{0+16\sqrt{41}}{-2} =\frac{16\sqrt{41}}{-2} =\frac{8\sqrt{41}}{-1} $
| 4x+5+2x=x=3 | | 28*27=x*21 | | 5x^2+32x+20=0 | | 28*y=21*20 | | 6x-5x+7=15-3 | | 3+2t=–3 | | x^2+7^2=24^2 | | 5x-3x-5+1=10 | | w–7=2 | | 28(y)=21(20) | | -3(1/9x)-4=3x-5 | | 5z-9=6 | | u+67=18 | | x+2x+(x+2)=26 | | 8=k-17 | | 3√2x^2–13x+5√2=0 | | 3a^2+8a=4 | | 3t+3t+9t=180 | | 4+3/x=6 | | 14y+53+71=180 | | 2x4*3x-6-8=120 | | 2x+14=−4 | | (11x-2)=(6x+7)= | | x-132=150 | | 36÷n=4*3 | | 8n+6=20(n=2) | | 3/8x+11=54 | | 9c-7=-16 | | 11/3+x=3/2/3 | | X-8=1-12(x+6) | | 6x=22x-14 | | –10h+10=–5h |